1) Use the divergence theorem to find the outward flux of the field $\mathbf{F}=(x z) \boldsymbol{i}+(y z) \boldsymbol{j}+\boldsymbol{k}$ across the boundary of the region which is the entire surface of the upper cap cut from the solid sphere $x^{2}+y^{2}+z^{2} \leq 25$ by the plane $z=3$

$$
\text { Big Hint: }=\ldots \ldots \ldots \ldots \ldots=\int_{0}^{2 \pi} \int_{0}^{4} \int_{3}^{\sqrt{25-r^{2}}} 2 z(r d z d r d \theta)=\ldots \ldots .
$$

2. (Read Carefully) Use Stokes' theorem to evaluate the counterclockwise circulation of the field $\mathbf{F}=y^{2} \boldsymbol{i}-y \boldsymbol{j}+3 z^{2} \boldsymbol{k}$ around the boundary of the ellipse in which the plane $2 x+6 y-3 z=6$ meets the cylinder $x^{2}+y^{2}=1$ (counterclockwise).

BIG HINT: Curl(F) is easy. Next choose your surface S in the plane $2 x+6 y-3 z=6$. Now compute $\mathrm{n} . \mathrm{d} \delta$ by the formula $\mp \frac{\nabla g}{\left|g_{z}\right|} d y d x$. Your projected region in the xy-plane is the region inside $x^{2}+y^{2}=1$
3. (Read Carefully) Use Stokes' theorem to evaluate the counterclockwise circulation of the field $\mathbf{F}=\sin x^{2} \boldsymbol{i}+\left(e^{y^{2}}+x^{2}\right) \boldsymbol{j}+\left(z^{4}+2 x^{2}\right) \boldsymbol{k}$ around the boundary of the triangle in the first octant cut by the plane $\frac{x}{3}+\frac{y}{2}+z=1$.
BIG HINT: Curl(F) is easy. By Stokes' Thm., we can choose our surface S in the plane $\frac{x}{3}+\frac{y}{2}+z=1$ Now compute n.d δ by the formula $\mp \frac{\nabla g}{\left|g_{z}\right|} d y d x$. Your projected region in the xy-plane is the triangle in the $1^{\text {st }}$ quadrant bounded by $\frac{x}{3}+\frac{y}{2}=1$ and the coordinate axes.
4. Use the divergence theorem to find the outward flux of the field $\mathbf{F}=(x y) \boldsymbol{i}+\left(y^{2}+e^{x^{2}}\right) \boldsymbol{j}+\sin (x y) \boldsymbol{k}$ over the surface of the region bounded by the parabolic cylinder $z=1-x^{2}$ and the planes $z=0, y=0$, and $y+z=2$
$\underline{\text { Big Hint: }}=\ldots \ldots \ldots \ldots .=\int_{-1}^{1} \int_{0}^{2} \int_{0}^{1-x^{2}} 3 y d z d y d x=$.
5) Solve the DE $(x+2)$ siny $d x+x \cos y d y=0$.
6) a) Change the $\mathrm{DE} 3\left(1+x^{2}\right) y^{\prime}=(1+2 x) y^{5 / 3}-2 x y$
to a linear DE Then STOP!!
Big Hint: It is a Bernoulli DE.

6b) Use an integrating factor to change the following D.E to an exact DE. Then STOP!

$$
6 x y d x+\left(4 y+9 x^{2}\right) d y=0
$$

6c) Section 2.5 ABC : 13 (Homogenous)

7a) (About the Uniqueness Theorem.)
Find all solutions of $y^{\prime}=4 \cos (y \sin (y+2 x))-6 \quad ; \quad y(0)=0$.
(Hint: Try $y=k x$ for some k.)
7b) (About the Uniqueness Theorem.) Consider the differential equation y ' $=f(x ; y)$. Assume that $f(x ; y)$ has continuous partial derivatives (w.r.t $x \& y$) for all values of x and y.
Can the two functions $y_{-}(\mathbf{x})=\mathbf{x}^{\wedge} \mathbf{2} \quad \& y_{-} \mathbf{2}(\mathbf{x})=-\mathbf{x}^{\wedge} \mathbf{2}$
both be solutions to this differential equation? Justify your answer
(i.e. if yes, give an example of such an $\mathrm{f}(\mathrm{x} ; \mathrm{y})$ and if no, supply a proof).

Big Hint: Impossible because Both solutions have the common propery $y(0)=$.....
So this contradicts the Uniqueness theorem 1.2 (?)........

